Modeling of statistical parameters of water turbidity in river flows
https://doi.org/10.55959/MSU0579-9414.5.78.1.4
Abstract
The economic use of water bodies in many ways relies on the calculation of solid runoff at various scales, from momentary to annual. Estimation of the annual solid runoff and the degree of its reliability, as well as the estimation of statistical parameters of turbidity are extremely difficult in case of irregular and insufficient illumination for different phases of water regime. At the same time, the knowledge of the processes of natural water quality formation and the elaboration of sufficient calculation methods allow reproducing the main indicators of water quality with acceptable accuracy. The statistical analysis of water quality indicators could be expanded through a comprehensive approach to their evaluation using well-established deterministic and stochastic calculation algorithms with arguments that are observed regularly and for a long time. In this case, a composite method can be applied to estimate the parameters of sediment flow or water turbidity distribution. The method allows finding the parameters of the distribution curve of a function through the parameters of the distribution curve of its arguments. The paper presents a deterministic-stochastic modeling system “weatherrunoff- sediments”, based on a stochastic weather model, a model of runoff formation in the catchment and a model of annual solid runoff. The system makes it possible to estimate the parameters of the distribution of sediment load and turbidity daily values in case of insufficient observation data and changing conditions of runoff formation within the catchment resulting from natural causes or economic activities. The practical implementation of the modeling system for the Narva River showed a good correspondence between the distribution parameters of observed and calculated series of daily water turbidity values. The presented numerical implementation of the climate forecast showed that a decrease in river flow caused by increasing air temperature will lead to a significant increase in water turbidity.
About the Authors
M. V. ShmakovaRussian Federation
Leading Scientifi c Researcher, D.Sc. in Geography
S. A. Kondratyev
Russian Federation
Chief Scientifi c Researcher, D.Sc. in Mathematics and Physics
References
1. Ailliot P., Allard D., Monbet V., Naveau P. Stochastic weather generators: an overview of weather type models, Journal de la Societe? Franc aise de Statistique, 2015, vol. 156(1), p. 101–113.
2. Alekseevskij N.I. Formirovanie i dvizhenie rechnyh nanosov [Formation and movement of river sediments], Moscow, Moscow State University Publ., 1998, 201 p. (In Russian)
3. Bailey N.T.J. The Elements of Stochastic Processes, John Wiley, New York, 1964, 39 p.
4. Bobrovitskaya N.N., Kokorev A.V., Lemeshko N.A. Regional patterns in recent trends in sediment yields of Eurasian and Siberian rivers, Global and Planetary Change, 2003, vol. 39, p. 127–146.
5. Bobrovitskaya N.N., Kokorev A.V. Development of transboundary surface water monitoring system. XXIII Nordic Hydrological Conference, Tallinn, Estonia 8–12 August 2004, Selected articles Arvo Jarvet (ed.), vol. 11, NHP Report, no. 48, Tartu, p. 415–423.
6. Borshch S.V. Hristoforov A.V., Yumina N.M. Statisticheskij analiz v gidrologicheskih prognozah. [Statistical analysis in hydrological forecasts], Moscow, Russia Hydrometeorological center, 2018, 160 p. (In Russian)
7. Gel’fan A.N. Dinamiko-stohasticheskoe modelirovanie formirovaniya talogo stoka [Dynamic-stochastic modeling of melt runoff formation], Moscow, Nauka Publ., 2007, 280 p. (In Russian)
8. Gumbel E.J. Statistical forecast of droughts, IAHS Bulletin, 1963, vol. 8, no. 1, p. 5–23.
9. Jones J.W. A simulated environmental model of temperature, evaporation, rainfall and soil moisture, Trans. Amer. Soc. Agric. Eng., 1972, no. 15, p. 0366–0372.
10. Karlin L.N. Prognosticheskie ocenki vliyaniya izmeneniya klimata na ekologicheskoe sostoyanie Baltijskogo moray [Prognostic assessments of the impact of climate change on the ecological state of the Baltic Sea], Repost for project RFFR no. 09-05-13553, 2010. (In Russian)
11. Kondolf G.M., Rubin Z.K., Minear J.T. Dams on the Mekong: Cumulative sediment starvation, Water Resource Research, 2014, vol. 50, iss. 6, p. 5158–5169.
12. Kondrat’ev S.A., Shmakova M.V. Matematicheskoe modelirovanie massoperenosa v sisteme “vodosbor – vodotok – vodoem” [Mathematical modeling of mass transfer in the “catchment –watercourse – reservoir system”], St. Petersburg, Nestor-Istoriya Publ., 2019, 248 p. (In Russian)
13. Kramer G. Matematicheskie metody statistiki [Mathematical methods in statistics], Moscow, Mir Publ., 1975. 648 p. (In Russian)
14. Larsen G.A., Pense R.B. Stochastic simulation of daily climatic data for agronomic models, Agronomy Journal, 1982, vol. 74, no. 3, p. 510–514.
15. Lepihin A.P., Voznyak A.A. Statisticheskie funkcii raspredeleniya gidrohimicheskih pokazatelej kachestva vody poverhnostnyh vodnyh ob”ektov [Statistical functions of the surface water bodies’ water quality hydrochemical indicators distribution], Vodnoe hozyajstvo Rossii. Problemy, tekhnologii, upravlenie, 2012, no. 4, p. 21–32. (In Russian)
16. Moore J.N., Brook E.J., Johns C. Grain size partitioning of metals in contaminated coarse-grained river flood plain sediment, Clark Fork River, Montana, Environ. Geol. Wat. Sci., 1989, no. 14, p. 107–115.
17. Naidu B.S.K. Addressing the problems of silt erosion at hydro plants, Hydropower and Dams Issue Three, 1997.
18. Nick A.D., Harp J.F. Stochastic generation of temperature and solar radiation data, Journal of Hydrology, 1980, 48 p.
19. Racsko P.L., Szeidl L., Semenov M. A serial approach to local stochastic weather models, Ecological Modelling, 1991, vol. 57, p. 27–41.
20. Shmakova M.V. Stohasticheskaya Model’ Pogody v sisteme determinirovanno – stohasticheskogo modelirovaniya harakteristik stoka [Stochastic Weather Model in the system of deterministic stochastic modeling of flow parameters], Extended Abstract of Ph.D. Thesis in Technic, St. Petersburg, Russian State Hydrometeorol. University Publ., 2010, 25 p. (In Russian)
21. Smyzhova E.S. Ocenka stoka biogennyh veshchestv s uchyotom osobennostej gidrohimicheskoj informacii (na primere reki Velikoj) [Assessment of runoff of biogenic substances taking into account the features of hydrochemical information (case study of the Velikaya River)], Extended Abstract of Ph.D. Thesis in Geography, St. Petersburg, Russian State Hydrometeorol. University Publ., 2010, 27 p. (In Russian)
22. US EPA. Nutrient Criteria Technical Guidance Manual: Lakes and Reservoirs, US Environmental Protection Agency, Washington, DC, EPA-822-B00-001, 2000.
23. Vinogradov Yu.B. Matematicheskoe modelirovanie processov formirovaniya stoka. Opyt kriticheskogo analiza [Mathematical modeling of flow formation processes. Experience of critical analysis], Leningrad, Hydrometeorological Publ., 1988, 312 p. (In Russian)
24. Voznyak A.A., Lepihin A.P. Razrabotka regional’nyh PDK: neobhodimost’, metodika, primer [Development of regional MPC: necessity, methodology, example], Geograficheskij vestnik, 2018, no. 2(45), p. 103–115. (In Russian)
25. Avtomatizirovannaya informacionnaya sistema gosudarstvennogo monitoringa vodnyh ob”ektov (AIS GMVO) [Automated information system for state monitoring of water bodies (AIS SMWO)], Ministerstvo prirodnyh resursov i ekologii Rossijskoj Federacii Federal’noe agentstvo vodnyh resursov [Ministry of natural resources and ecology of the Russian Federation Federal Agency for water resources], URL: https://gmvo.skniivh.ru/index.php?id=1 (access date 25.06.2020).
Review
For citations:
Shmakova M.V., Kondratyev S.A. Modeling of statistical parameters of water turbidity in river flows. Lomonosov Geography Journal. 2023;(1):43-51. (In Russ.) https://doi.org/10.55959/MSU0579-9414.5.78.1.4