Extremes and general trends in long-term variability of atmospheric radiation parameters in Moscow
https://doi.org/10.55959/MSU0579-9414-5-2022-6-90-103
Abstract
The work continues the study of the causes of climatic changes in the Moscow region basing on the observations of the MSU Meteorological Observatory. Long-term dynamics of the main climate-forming factor, i. e. the radiation regime of the atmosphere, was analyzed. During the 65 year observation period in Moscow, significant trends were noted for all radiation parameters of the atmosphere, most pronounced in winter. The average annual values of radiation, long-wavelength balances and soil surface temperature increase by 26, 16 and 49% respectively, and their winter values by 73, 41 and 34%. In the 21st century, the decrease in aerosol turbidity of the atmosphere, the increase in direct and the decrease in scattered radiation have intensified. The rate of increase in the long-wave and radiation balance, as well as in the soil surface temperature, has almost doubled. In the absence of significant volcanic eruptions, the “greenhouse effect” of cloud cover has become a principal natural factor. The anthropogenic component of aerosol turbidity has significantly decreased in recent years, which is associated with a number of measures taken by the Moscow government to improve the state of the environment in the city. The anthropogenic influence on the radiation regime in the city manifested itself in higher long-wave fluxes, which led to increased intensity of the “heat island” in the 21st century.
About the Author
E. V. GorbarenkoRussian Federation
Leading Scientifi c Researcher, Ph.D. in Geography
References
1. Abakumova G.M., Gorbarenko E.V., Nezval’ E.I., Shilovceva O.A. Klimaticheskie resursy solnechnoj radiacii Moskovskogo regiona [Climatic resources of solar radiation of the Moscow region], Moscow, LIBROKOM Publ., 2012, 312 p. (In Russian)
2. Bityukova V.R., Saul’skaya T.D. Izmenenie antropogennogo vozdeistviya proizvodstvennykh zon Moskvy za poslednie desyatiletiya [Changes of the anthropogenic impact of Moscow industrial zones during the recent decades], Vestn. Mosk. un-ta, Ser. 5, Geogr., 2017, no. 3, p. 24‒33. (In Russian)
3. Chernokulsky A., Esau I., Bulygina O., Davy R., Mokhov I., Outten S., Semenov V. Climatology and interannual variability of cloudiness in the Atlantic Arctic from surface observations since the late 19th century, J. Climate, 2016, DOI: 10.1175/JCLI-D-16-0329.1.
4. Eremina I.D., Chubarova N.E., Alekseeva L.I., Surkova G.V. Kislotnost’ i khimicheskii sostav osadkov na territorii Moskovskogo regiona v teplyi period goda [Acidity and chemical composition of summer precipitation within the Moscow region], Vestn. Mosk. un-ta, Ser. 5, Geogr., 2014, no. 5, p. 3‒11. (In Russian)
5. Feigel’son E.M., Krasnokutskaya L.D. Potoki solnechnogo izlucheniya i oblaka [Streams of solar radiation and clouds], Leningrad, Hydrometeoizdat Publ., 1978, 158 p. (In Russian)
6. Foster M.J., Di Girolamo L., Frey R.A., Heidinger A.K., Phillips C., Menzel W., Zhao G. Global Cloudiness, State of the Climate in 2019, Bull. Amer. Meteor. Soc., 2020, vol. 101(8), p. S51‒53, DOI: 10.1175/2020BAMS.
7. Gorbarenko E.V. Lokal’nye i global’nye faktory, opredelivshie mnogoletnie izmeneniya aerozol’noi opticheskoi tolshchiny atmosfery v Moskve v 1955‒2018 godakh [Local and global factors that determined long-term changes in the aerosol optical thickness of the atmosphere in Moscow in 1955‒2018], Proceedings of the A.I. Voeikov Main Geophysical Observatory, 2019, no. 595, p. 169‒190. (In Russian)
8. Gorbarenko E.V. Long-term variations of long-wave radiation in Moscow Russian, Russian Meteorology and Hydrology, 2013, vol. 38, p. 669‒676.
9. Gorbarenko E.V. Radiation climate of Moscow, Russian Meteorology and Hydrology, 2020, vol. 45, p. 478–487.
10. Gorbarenko E.V. Climate changes in atmospheric radiation parameters from the MSU meteorological observatory data, Russian Meteorology and Hydrology, 2016, vol. 41, no. 11/12, p. 789–797.
11. IPCC (Intergovernmental Panel on Climate Change), Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (eds.), Cambridge University Press, Cambridge, United Kingdom and New York, USA, 2013, 1535 p.
12. Kislov A.V., Varentsov M.I., Gorlach I.A., Alekseeva L.I. “Ostrov Tepla” Moskovskoi aglomeratsii i urbanisticheskoe usilenie global’nogo potepleniya [“Heat island” of the Moscow agglomeration and the urban-induced amplification of global warming], Vestn. Mosk. un-ta, Ser. 5, Geogr., 2017, no. 4, p. 12‒19. (In Russian)
13. Klimat Moskvy v usloviyakh global’nogo potepleniya [Climate of Moscow in conditions of global warming], A.V. Kislov (ed.), Moscow, MSU Publ., 2017, 288 p. (In Russian)
14. Kononova N.V. Izmeneniya tsirkulyatsii atmosfery severnogo polushariya v XX‒XXI stoletiyakh i ikh posledstviya dlya klimata [Changes in the circulation of the atmosphere of the northern hemisphere in the XX‒XXI centuries and their consequences for the climate], Fundamental and Applied Climatology, 2003, vol. 1, p. 133‒162. (In Russian)
15. Li J., Carlson B.E., Dubik O., Lacis А.А. Recent trends in aerosol optical properties derived from AERONET measurements, Atmos. Chem. Phys., 2014, vol. 14, p. 12271‒12289.
16. Li J., You Q., He B. Distinctive spring shortwave cloud radiative effect and its inter-annual variation over southeastern China, Atmospheric Science Letters, 2020, vol. 21(6), e970, DOI: 10.1002/asl.970.
17. Loeb N.G., Johnson G.C., Thorsen T.J., Lyman J.M., Rose F.G., Kato S. Satellite and Ocean Data Reveal Marked Increase in Earth’s Heating Rate, Geophysical Research Letters, 2021, vol. 48, iss. 13, e2021GL093047, DOI: 10.1029/2021GL093047.
18. Obregón M., Serrano A., Costa M.J., Silva A.M. Global Spatial and Temporal Variation of the Combined Effect of Aerosol and Water Vapour on Solar Radiation, Remote Sensing, 2021, vol. 13(4), p. 708, DOI: 10.3390/ rs13040708.
19. Ohmura A. Observed decadal variations in surface solar radiation and their causes, J. Geophys. Res., 2009, vol. 114, D00D05, DOI: 10.1029/2008JD011290.
20. Orsini A., Tomasi C., Calzolari F., Nardino M., Cacciari A., Georgiadis T. Cloud cover classification through simultaneous ground-based measurements of solar and infrared radiation, Atmospheric Research, 2002, vol. 61(4), p. 251‒275, DOI: 10.1016/S0169-8095(02)00003-0.
21. Popova V.V., Matskovskii V.V., Mikhailov A.Yu. Sovremennye izmeneniya klimata sushi vnetropicheskoi zony severnogo polushariya [Recent climate change over the terrestrial part of the extratropical northern hemisphere zone], Vestn. Mosk. un-ta, Ser. 5, Geogr., 2018, no. 1, p. 3‒12. (In Russian)
22. Schmithüsen H., Koppe R., Sieger R., König-Langlo G. BSRN Toolbox V2.5 ‒ a tool to create quality checked output files from BSRN datasets and station-to-archive files, 2019, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA, DOI: 10.1594/PANGAEA.901332.
23. Shilovtseva O.A. [History of meteorological observations at Moscow University], Ekologo-klimaticheskie kharakteristiki atmosfery v 2014 g. po dannym Meteorologicheskoj Observatorii MGU imeni M.V. Lomonosova [Environmental and climate characteristics of the atmosphere in 2014 according to the measurements of the Meteorological Observatory of Moscow State University], O.A. Shilovtseva, E.I. Nezval’ (еds.), Moscow, MAKS Press Publ., 2015, р. 181‒214. (In Russian)
24. Vtoroi otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii [The second assessment report of Roshydromet on climate changes and their consequences on the territory of the Russian Federation], Moscow, Roshydromet Publ., 2014, 58 p. (In Russian)
25. Wan X., Qin F., Cui F., Chen W., Ding H., Li C. Correlation between the distribution of solar energy resources and the cloud cover in Xinjiang, IOP Conference Series: Earth and Environmental Science, 2021, vol. 675(1), p. 012060, DOI: 10.1088/1755-1315/675/1/012060.
26. Wild M. How well do IPCC-AR4/CMIP3 climate models simulate global dimming/brightening and twentieth century daytime and nighttime warming? J. Geophys. Res., 2009, vol. 114, D00D11, DOI: 10.1029/2008JD011372.
27. Web source Doklad “O sostoyanii okruzhayushchei sredy v gorode Moskve v 2019 godu” [Report “On the state of the environment in the city of Moscow in 2019”], A.O. Kulbachevsky (ed.), Moscow, 2020, 222 p., URL: http:// www.ecology.moscow/eco/ru/report_result (access date 15.05.2020) (In Russian)
Review
For citations:
Gorbarenko E.V. Extremes and general trends in long-term variability of atmospheric radiation parameters in Moscow. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2022;(6):90-103. (In Russ.) https://doi.org/10.55959/MSU0579-9414-5-2022-6-90-103