Preview

Lomonosov Geography Journal

Advanced search

Special characteristics of the boundary atmosphere in the city of Nadym according to experimental measurements and eddy-resolving modeling

https://doi.org/10.55959/MSU0579-9414-5-2022-6-64-78

Abstract

The paper presents the results of studying the urban heat island formation in winter under the stable atmospheric stratification for small Arctic and subarctic cities (case study of the Nadym city). As a result of three measurement campaigns using contact and remote measurements, information was obtained on the intensity and vertical extent of the urban heat island. Simultaneous measurements of temperature and wind speed profiles within and outside the city showed that, with a strongly stable stratification, a mixed boundary layer is formed in the city with close to neutral stratification and a height of about 50 m. To explain the revealed phenomenon, LES modeling of the turbulent flow was carried out. A turbulent flow typical for winter conditions in a quasi-stationary, stable-stratified boundary layer above a flat surface was used as a flow approaching the city. A real 3D model of urban built-up area was used, obtained from the OpenStreetMap database and refined using the ArctiсDEM data and by visual evaluation of building height. The simulation results confirmed the formation of a mixed layer in the urban environment and showed that mechanical mixing of a stably stratified atmosphere is an important mechanism of urban heat island formation at the surface. This is confirmed by the fact that, according to calculations, the turbulent kinetic energy in the city is more than 10 times higher than the TKE outside its borders. The main source of TKE in the city is its shear generation at the height of buildings as they are flown around. Experimental studies and theoretical calculations have confirmed the existence of a pronounced urban heat island in small polar cities under stable stratification and for the first time made it possible to estimate the height of its vertical development.

About the Authors

M. I. Varentsov
Research Computing Center of the Lomonosov Moscow State University; A.M. Obukhov Institute of Atmospheric Physics RAS; Moscow Center for Fundamental and Applied Mathematics; Lomonosov Moscow State University, Faculty of Geography
Russian Federation

Senior Researcher, Ph.D. in Geography



I. A. Repina
Research Computing Center of the Lomonosov Moscow State University; A.M. Obukhov Institute of Atmospheric Physics RAS; Moscow Center for Fundamental and Applied Mathematics
Russian Federation

Head of air-sea interaction laboratory, D.Sc. in Physics and Mathematics



A. V. Glazunov
Research Computing Center of the Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics; G.I. Marchuk Institute of Numericalal Mathematics RAS
Russian Federation

Leading Scientifi c Researcher, D.Sc. in Physics and Mathematics



T. E. Samsonov
Moscow Center for Fundamental and Applied Mathematics; Lomonosov Moscow State University, Faculty of Geography
Russian Federation

Department of Cartography and Geoinformatics, Leading Scientifi c Researcher, Ph.D. in Geography



P. I. Konstantinov
Lomonosov Moscow State University, Faculty of Geography
Russian Federation

Department of Meteorology and Climatology, Associate Professor, Ph.D.in Geography



V. M. Stepanenko
Research Computing Center of the Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics
Russian Federation

Deputy Director, D.Sc. in Physics and Mathematics



V. N. Lykosov
Research Computing Center of the Lomonosov Moscow State University; Moscow Center for Fundamental and Applied Mathematics; G.I. Marchuk Institute of Numericalal Mathematics RAS
Russian Federation

Leading Scientifi c Researcher, D.Sc. in Physics and Mathematics



A. Yu. Artamonov
A.M. Obukhov Institute of Atmospheric Physics RAS
Russian Federation

Air-sea interaction laboratory, Junior Scientifi c Researcher



A. B. Debolskiy
Research Computing Center of the Lomonosov Moscow State University; A.M. Obukhov Institute of Atmospheric Physics RAS
Russian Federation

Air-sea interaction laboratory, Junior Scientifi c Researcher



A. S. Pechkin
Scientifi c Center for Arctic Studies
Russian Federation

Department of scientifi c research, Scientifi c Researcher



A. V. Soromotin
Tumen scientifi c center SB RAS, Research Institute of Ecology and Rational Utilization of Natural Resources, Tyumen State University
Russian Federation

Department of methodology for the multidisciplinary research of cryosphere, Leading Scientifi c Researcher, D.Sc. in Biology



References

1. Anderson W., Li Q., Bou-Zeid E. Numerical simulation of flow over urban-like topographies and evaluation of turbulence temporal attributes, Journal of Turbulence, 2015, vol. 16, no. 9, p. 809–831.

2. Baklanov A., Mestayer P., Clappier A., Zilitinkevich S., Joffre S., Mahura A., Nielsen N.W. Towards improving the simulation of meteorological fields in urban areas through updated / advanced surface fluxes description, Atmospheric Chemistry and Physics, 2008, vol. 8, p. 523–543.

3. Beare R.J., Macvean M.K., Holtslag A.A.M., Cuxart J., Esau I., Golaz J.-C., Jimenez M.A., Khairoutdinov M., Kosovic B., Lewellen D. An intercomparison of largeeddy simulations of the stable boundary layer, Boundary Layer Meteorol., 2006, vol. 118, p. 247–272.

4. Benz S.A., Bayer P., Goettsche F.M., Olesen F.S., Blum P. Linking Surface Urban Heat Islands with Groundwater Temperatures, Environ. Sci. Technol., 2016, vol. 50, no. 1, p. 70–78.

5. Duckworth F.S., Sandberg J.S. The effect of cities upon horizontal and vertical temperature gradients, Bull. Am. Meteorol. Soc., 1954, vol. 35, no. 5, p. 198–207.

6. Esau I., Miles V.V., Davy R., Miles M.W., Kurchatova A. Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia, Atmos. Chem. Phys., 2016, vol. 16, no. 15, p. 9563–9577.

7. Garuma G.F. Review of urban surface parameterizations for numerical climate models, Urban Clim., 2017, vol. 24, p. 830–851.

8. Geletič J., Lehnert M., Krč P., Resler J., Krayenhoff E.S. High-Resolution Modelling of Thermal Exposure during a Hot Spell: A Case Study Using PALM-4U in Prague, Czech Republic, Atmosphere, 2021, vol. 12, no. 2, p. 175.

9. Giometto M.G., Christen A., Meneveau C., Fang J., Krafczyk M., Parlange M.B. Spatial characteristics of roughness sublayer mean flow and turbulence over a realistic urban surface, Boundary-layer meteorology, 2016, vol. 160, no. 3, p. 425–452.

10. Glazunov A., Rannik Ü., Stepanenko V., Lykosov V., Auvinen M., Vesala T., Mammarella I. Large-eddy simulation and stochastic modeling of Lagrangian particles for footprint determination in the stable boundary layer, Geoscientific Model Development, 2016, vol. 9, no. 9, p. 2925–2949.

11. Glazunov A.V. Numerical simulation of stability stratified turbulent flows over an urban surface: spectra and scales and parametrization of temperature and wind-velocity profiles, Izvestiya. Atmospheric and Oceanic Physics, 2014a, vol. 50, no. 4, p. 356–368.

12. Glazunov A.V. Numerical simulation of stability stratified turbulent flows over flat and urban surfaces, Izvestiya, Atmospheric and Oceanic Physics, 2014b, vol. 50, no. 3, p. 236–245.

13. Glazunov A.V., Stepanenko V.M. Large eddy simulation of stratified turbulent flows over heterogeneous landscapes, Izvestiya – Atmospheric and Oceanic Physics, 2015, vol. 51, no. 4, р. 351–361.

14. Han J.Y., Baik J.J., Lee H. Urban impacts on precipitation, Asia-Pacific J. Atmos. Sci., 2014, vol. 50, no. 1, p. 17–30.

15. Hinkel K.M., Nelson F.E., Klene A.E., Bell J.H. The urban heat island in winter at Barrow, Alaska, Int. J. Climatol., 2003, vol. 23, no. 15, p. 1889–1905.

16. Huang Q., Lu Y. Urban heat island research from 1991 to 2015: a bibliometric analysis, Theor. Appl. Climatol., 2017, no. 1, p. 1–13.

17. Kadygrov E.N., Pick D.R. The potential for temperature retrieval from an angular-scanning single-channel microwave radiometer and some comparisons with in situ observations, Meteorological Applications: A journal of forecasting, practical applications, training techniques and modelling, 1998, vol. 5, no. 4, p. 393–404.

18. Konstantinov P.I., Grishchenko M.Yu., Varentsov M.I. Mapping urban heat islands of arctic cities using combined data on field measurements and satellite images based on the example of the city of Apatity (Murmansk Oblast), Izvestiya, Atmospheric and Oceanic Physics, 2015, vol. 51(9), p. 992–998.

19. Konstantinov P., Varentsov M., Esau I. A high density urban temperature network deployed in several cities of Eurasian Arctic, Environmental Research Letters, 2018, vol. 13, no. 7, p. 0075007.

20. Li X.X., Britter R., Norford L.K. Effect of stable stratification on dispersion within urban street canyons: A large-eddy simulation, Atmospheric Environment, 2016, vol. 144, p. 47–59.

21. Lokoshchenko M.A., Korneva I.A. Underground urban heat island below Moscow city, Urban Clim., 2015, vol. 13, p. 1–13.

22. Lokoshchenko M.A., Korneva I.A., Kochin A.V., Dubovetsky A.Z., Novitsky M.A., Razin P.Y. Vertical extension of the urban heat island above Moscow, Doklady Earth Sciences, 2016, vol. 466, no. 1, p. 70–74.

23. Magee N., Curtis J., Wendler G. The urban heat island effect at Fairbanks, Alaska, Theor. Appl. Climatol., 1999, vol. 64, no. 1–2, p. 39–47.

24. Miles V., Esau I. Seasonal and Spatial Characteristics of Urban Heat Islands (UHIs) in Northern West Siberian Cities, Remote Sens., 2017, vol. 9, no. 10, p. 989.

25. Oke T.R. The energetic basis of the urban heat island, Quarterly Journal of the Royal Meteorological Society, 1982, vol. 108, no. 455, p. 1–24.

26. Oke T.R., Mills G., Christen A., Voogt J.A. Urban climates, Cambridge University Press, 2017, 520 p.

27. Regiony i goroda Rossii: integral’naya ocenka ekologicheskogo sostoyaniya [Russian regions and cities: integration estimation of ecological condition], N.S. Kasimov (ed.), Moscow, IP “Filimonov M.V.”, 2014, 560 p. (In Russian)

28. Repina I.A., Varentsov M.I., Chechin D.G., Artamonov A.Yu., Bodunkov N.E., Kalyagin M.Yu., Zhivoglotov D.N., Shevchenko A.M., Varentsov A.I., Kuksova N.E., Stepanenko V.M., Shestakova A.A. Ispol’zovanie bespilotnyh letatel’nyh apparatov dlya issledovaniya atmosfernogo pogranichnogo sloya [Application of unmanned aircraft for studying of the atmospheric boundary layer], Innovatika i ekspertiza, 2020, vol. 2, no. 30, p. 20–39. (In Russian)

29. Samsonov T.E., Konstantinov P.I. OpenStreetMap data assessment for extraction of urban land cover and geometry parameters required by urban climate modeling, Ext. Abstr. Proc. GIScience, 2014, p. 395–399.

30. Samsonov T.E., Konstantinov P.I., Varentsov M.I. Objectoriented approach to urban canyon analysis and its applications in meteorological modeling, Urban Clim., 2015, vol. 13, p. 122–139.

31. Starchenko A.V., Nuterman R.B., Danilkin E.A. Chislennoe modelirovanie turbulentnyh techenij i perenosa primesi v ulichnyh kan’onah [Numerical modelling of turbulent flows and traces transport in the urban canyons], Tomsk, Tomsk universities publ., 2015, 252 p. (In Russian)

32. Tomas J.M., Pourquie M., Jonker H.J.J. Stable stratification effects on flow and pollutant dispersion in boundary layers entering a generic urban environment, Boundary-Layer Meteorology, 2016, vol. 159, no. 2, p. 221–239.

33. Tzavali A., Paravantis J.P., Mihalakakou G., Fotiadi A., Stigka E. Urban heat island intensity: A literature review, Fresenius Environ. Bull., 2015, vol. 24, p. 4535–4554.

34. Varentsov M., Stepanenko V., Repina I., Artamonov A., Bogomolov V., Kuksova N., Marchuk E., Pashkin A., Varentsov A. Balloons and Quadcopters: Intercomparison of Two Low-Cost Wind Profiling Methods, Atmosphere, 2021, vol. 12, no. 3, p. 380.

35. Varentsov M., Wouters H., Platonov V., Konstantinov P. Megacity-Induced Mesoclimatic Effects in the Lower Atmosphere: A Modeling Study for Multiple Summers over Moscow, Russia, Atmosphere, 2018b, vol. 9, no. 2, p. 50.

36. Varentsov M.I., Artamonov A.Y., Pashkin A.D., Repina I.A. Experience in the quadcopter-based meteorological observations in the atmospheric boundary layer, IOP Conf. Ser. Earth Environ. Sci., 2019, vol. 231, p. 12053.

37. Varentsov M.I., Konstantinov P.I., Samsonov T.E., Repina I.A. Izuchenie fenomena gorodskogo ostrova tepla v usloviyah polyarnoj nochi s pomoshch’yu eksperimental’nyh izmerenij i distancionnogo zondirovaniya na primere Noril’ska [Investigation of urban heat island phenomenon under polar night conditions with experimental measurements and remote sensing methods (case study of Norilsk)], Sovremennye problemy distancionnogo zondirovaniya Zemli iz kosmosa, 2014, vol. 11, no. 4, p. 329–337. (In Russian)

38. Varentsov M., Konstantinov P., Baklanov A., Esau I., Miles V., Davy R. Anthropogenic and natural drivers of a strong winter urban heat island in a typical Arctic city, Atmos. Chem. Phys., 2018, vol. 18, p. 17573–17587.

39. Wang W., Xu Y., Ng E. Large-eddy simulations of pedestrianlevel ventilation for assessing a satellite-based approach to urban geometry generation, Graphical Models, 2018, vol. 95, p. 29–41.

40. Yushkov V.P., Kurbatova M.M., Varentsov M.I., Lezina E.A., Kurbatov G.A., Miller E.A., Repina I.A., Artamonov A.Y., Kallistratova M.A. Modeling an urban heat island during extreme frost in Moscow in January 2017, Izvestiya, Atmospheric and Oceanic Physics, 2019, vol. 55(5), p. 389–406.

41. Zhou D., Zhao S., Zhang L., Sun G., Liu Y. The footprint of urban heat island effect in China, Sci. Rep., 2015, vol. 5, p. 2–12.

42. Web source Porter С., Morin P., Howat I., Noh M.-J., Bates B., Peterman K., Keesey S., Schlenk M., Gardiner J., Tomko K., Willis M., Kelleher C., Cloutier M., Husby E., Foga S., Nakamura H., Platson M., Wethington M.J., Williamson C., Bauer G., Enos J., Arnold G., Kramer W., Becker P., Doshi A., D’Souza C., Cummens P., Laurier F., Bojesen M. ArcticDEM, 2018, Harvard Dataverse, V1, DOI: 10.7910/DVN/OHHUKH, URL: https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/OHHUKH (access date 31.03.2021).


Review

For citations:


Varentsov M.I., Repina I.A., Glazunov A.V., Samsonov T.E., Konstantinov P.I., Stepanenko V.M., Lykosov V.N., Artamonov A.Yu., Debolskiy A.B., Pechkin A.S., Soromotin A.V. Special characteristics of the boundary atmosphere in the city of Nadym according to experimental measurements and eddy-resolving modeling. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2022;(6):64-78. (In Russ.) https://doi.org/10.55959/MSU0579-9414-5-2022-6-64-78

Views: 208


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)