Preview

Lomonosov Geography Journal

Advanced search

Emission of methane from bottom sediments of the Vygosero reservoir

https://doi.org/10.55959/MSU0579-9414-5-2022-6-15-26

Abstract

The paper presents the results of studying the distribution of methane in near-bottom waters and bottom sediments in different parts of the Vygozero reservoir, which were identified in accordance with the morphology of the basin and various conditions of bottom sediments formation: South-Eastern area, former flooded bogs, river mouths and the Bobrovoe Lake; Central area, i. e. the Vygozero Lake before flooding; and the Northern region in which currents are influenced by the Segezha River, and which is affected by waste waters from the Segezha Pulp and Paper Mill.
It was found that the methane content in the Vygozero reservoir is comparable to the data for other temperate water bodies. The non-uniform gas distribution is shown (from 0,75 · 10–3 to 1,7 · 10–3 mg/l in bottom water and from 0,1 to 1,2 mg/l in bottom sediments). The highest concentrations were recorded in the South-Eastern region, and the minimum in the Northern region, which is determined by both qualitative composition of organic matter (the fulvate humus in the South-Eastern region, in contrast to the predominance of humic acids in other regions, as well as the higher sulfur content in the sediments of the Northern region) and thermal conditions (the warmer shallow South-Eastern region).
The rate of gas inflow from bottom sediments varied from 6,36 to 14,16 mgCH4/(m2·day) depending on the region: the maximum was recorded in the South-Eastern part, and the minimum in the Northern part of the reservoir. The total methane flux from bottom sediments was more than 11 tons/day. We proved that the spatial heterogeneity of methane distribution in the reservoir depends on the morphology of the basin, the uneven distribution of river runoff and actual anthropogenic load, and is also largely determined by the history of the reservoir, namely, the burial of organic matter of different genesis during the formation of a new reservoir bed after its flooding.

About the Authors

I. V. Morozov
Northern Water Problems Institute of the Karelian Research Centre of the Russian Academy of Sciences, sediment research group
Russian Federation

Junior Scientifi c Researcher



N. A. Belkina
Northern Water Problems Institute of the Karelian Research Centre of the Russian Academy of Sciences, sediment research group
Russian Federation

Head of the group, D.Sc. in Geography



M. S. Potakhin
Northern Water Problems Institute of the Karelian Research Centre of the Russian Academy of Sciences, sediment research group
Russian Federation

Senior Scientifi c Researcher, PhD in Geography



E. V. Gatalskaya
Northern Water Problems Institute of the Karelian Research Centre of the Russian Academy of Sciences, sediment research group
Russian Federation

Junior Scientifi c Researcher



References

1. Arinushkina E.V. Rukovodstvo po himicheskomu analizu pochv [Manual for Chemical Analysis of Soils], Moscow, Moscow State University Publ., 1982, 490 p. (In Russian)

2. Belkina N.A. [Bottom sediments of the Vygozero reservoir], Krupnejshie ozera-vodohranilishha Severo-zapada evropejskoj territorii Rossii: sovremennoe sostojanie i izmenenij ekosistem pri klimaticheskih i antropogennyh vozdejstvijah [The largest lakes-reservoirs in north-western European Russia: actual state and ecosystem changes under climatic and anthropogenic impacts], N.N. Filatov (еd.), Petrozavodsk, Karelian Research Centre of the Russian Academy of Sciences Publ., 2015, p. 247–256. (In Russian)

3. Belkina N.A. Retrospective assessment of bottom sediment condition in the Vygozero reservoir], Water Resources, 2014, vol. 41, no. 3, p. 270–279.

4. Blott S.J., Pye K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments, Earth Surface Processes and Landforms, 2001, vol. 26, iss. 11, p. 1237–1248, DOI: 10.1002/esp.261.

5. Chernitsyna S.M., Mamaeva E.V., Lomakina A.V., Pogodaeva T.V., Galach’yants Y.P., Bukin S.V., Khlystov O.M., Zemskaya T.I., Pimenov N.V. Phylogenetic diversity of microbial communities in the Posolsk Bank bottom sediments, Lake Baikal, Mikrobiology, 2016, vol. 85, no. 6, p. 672–680.

6. Deemer R., Harrison A., Li S., Beaulieu J., Delsontro T. Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis, BioScience, 2016, vol. 66, no. 11, p. 949–964.

7. Dzjuban A.N. Metan v donnyh otlozhenijah Cherepoveckoj zony Rybinskogo vodohranilishha i ocenka ego mikrobiologicheskoj transformacii i emissii [Methane in bottom sediments of the Cherepovets zone of the Rybinsk reservoir and the assessment of its microbiological transformation and emission], Gidrobiologicheskij zhurnal, 2009, vol. 45, no. 6, p. 36–42. (In Russian)

8. Dzyuban A.N. Methane and the microbiological processes of its transformation in the water of the Upper Volga reservoirs, Water Resources, 2002, vol. 29, no. 1, p. 61–71.

9. Fedorov Ju.A., Tambieva N.S., Gar’kusha D.N., Horoshevskaja V.O. Metan v vode i donnyh otlozhenijah Rybinskogo vodohranilishha: raspredelenie i biogeohimicheskie osobennosti obrazovanija [Methane in water and bottom sediments of the Rybinsk reservoir: distribution and biogeochemical characteristics of its formation], Rostov-on-Don, Institute for Scientific and Technical Information Publ., 1999, no. 1756-V-99, 82 p. (In Russian)

10. Forster P., Ramaswamy V., Artaxo P. et al. Changes in atmospheric constituents and in Radiative Forcing, Asses. Report of the IPCC, Cambridge University Press., Cambridge, 2007, p. 129–217.

11. Gar’kusha D.N., Fedorov Y.A., Tambieva N.S. Computing the methane cycle elements in the aquatic ecosystems of the Sea of Azov and the World Ocean based on empirical formulae, Russian Meteorology and Hydrology, 2016, vol. 41, no. 6, p. 410–417.

12. Gar’kusha D.N., Fedorov Y.A., Tambieva N.S., Andreev Y.A., Mikhailenko O.A. Methane in water and bottom sediments of Lake Baikal, Water Resources, 2019, vol. 46, no. 5, p. 726–737.

13. Garkusha D.N., Fyodorov Yu.A. Ocenka obshhego ob’ema, emissii i okislenija metana v vode i donnyh otlozhenijah Chernogo morja [Estimation of the total volume, emission and oxidation of methane in water and bottom sediments of the Black Sea], Mezhdunarodnyj nauchnoissledovatel’skij zhurnal, 2020, no. 12-2 (102), p. 6–13. (In Russian)

14. Gar’kusha D.N., Fedorov Ju.A., Tambieva N.S. Prostranstvenno-vremennye zakonomernosti raspredelenija soderzhanija metana v vodohranilishhah [Spatial-temporal patterns of methane distribution in reservoirs], Geopolitika i ekogeodinamika regionov, 2014, vol. 10, no. 1, p. 450–466. (In Russian)

15. Grechushnikova M.G., Lomova D.V., Lomov V.A., Kremeneckaja E.R., Efimova L.E., Repina I.A. [Emission of methane at “water – bottom sediments” and “water – atmosphere” boundaries in a low-flow valley reservoir], Nauchnye problemy ozdorovlenija rossijskih rek i puti ih reshenija. Sbornik nauchnyh trudov [Scientific problems of Russian rivers restoration and ways to solve them. Collection of scientific papers], 2019, p. 327–331. (In Russian)

16. Grechushnikova M.G., Shkol’niy D.I., Ocenka emissii metana vodohranilishhami Rossii [Estimation of methane emission from reservoirs of Russia], Vodnoe hozyajstvo Rossii, 2019, no. 2, p. 58–71. (In Russian)

17. Gruca-Rokosz R., Tomaszek J.A. Methane and Carbon Dioxide in the Sediment of a Eutrophic Reservoir: Production Pathways and Diffusion Fluxes at the Sediment – Water Interface, Water Air Soil Pollut, 2015, vol. 226:16, DOI: 10.1007/s11270-014-2268-3.

18. Hakanson L., Jansson M. Principles of lake sedimentology, Berlin, 1983, 316 p.

19. Holodov V.A., Yaroslavceva N.V., Farkhodov Y.R., Yashin M.A., Ivanov A.L., Lazarev V.I., Iliyn B.S., Philippova O.I., Volikov A.B. Optical properties of the extractable organic matter fractions in typical chernozems of long-term field experiments, Eurasian Soil Science, 2020, vol. 53, no. 6, p. 39–748.

20. Huttunen J.T., Väisänen T.S., Hellsten S.K., Mertikainen P.J. Methane fluxes at the sediment–water interface in some boreal lakes and reservoirs, Boreal Environmental Research, 2006, no. 11, p. 27–34.

21. IPCC, 2014: Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)], IPCC, Geneva, Switzerland, 151 p.

22. Judd A.G. The global importance and context of methane escape from the seabed, Geo-Marine Letters, 2003, vol. 23, no. 3–4, p. 147–154, DOI: 10.1007/s00367-003-0136-z.

23. Langenegger T., Vachon D., Donis D., McGinnis D.F. What the bubble knows: Lake methane dynamics revealed by sediment gas bubble composition, Limnology and Oceanography, 2019, vol. 64, iss. 4, p. 1526–1544, DOI: 10.1002/lno.11133.

24. Lein A.Ju., Ivanov M.V. Biogeohimicheskij cikl metana v okeane [Biogeochemical cycle of methane in the ocean], Moskva, Nauka Publ., 2009, 576 p. (In Russian)

25. Lima I.B.T., Ramos F.M., Bambace L.A.W., Rosa R.R. Methane Emissions from Large Dams as Renewable Energy Resources: A Developing Nation Perspective, Mitigation and Adaption Strategies for Global Change, 2008, no. 13, p. 193–206, DOI: 10.1007/s11027-007-9086-5.

26. Lomov V.A., Grechushnikova M.G., Repina I.A., Stepanenko V.M., Kazancev V.S., Artamonov A.Ju. [Emission of methane from the surface of reservoirs], Tret’i vinogradovskie chtenija. Grani gidrologii. Sbornik dokladov mezhdunarodnoj nauchnoj konferencii pamjati vydajushhegosja russkogo gidrologa Jurija Borisovicha Vinogradova [Third Vinogradov readings. Facets of hydrology. Collection of reports of the international scientific conference in memory of the outstanding Russian hydrologist Yuri Borisovich Vinogradov], O.M. Makar’eva (ed.), 2018, p. 401–405. (In Russian)

27. Lorenzen C.J. Determination of chlorophyll and phaeopigments: spectrophotometric equations, Limnology and Oceanography, 1967, vol. 12, no. 2, p. 343–346.

28. Louis V.L., Kelly C.A., Duchemin E., Rudd J.W.M., Rosenberg D.M. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate, Bioscience, 2000, vol. 50, no. 9, p. 766–775.

29. Lozovik P.A. [Vygozero reservoir], Krupnejshie ozeravodohranilishha Severo-zapada evropejskoj territorii Rossii: sovremennoe sostojanie i izmenenij ekosistem pri klimaticheskih i antropogennyh vozdejstvijah [The largest lakes-reservoirs in north-western European Russia: actual state and ecosystem changes under climatic and anthropogenic impacts], N.N. Filatov (ed.), Petrozavodsk, Karelian Research Centre of the Russian Academy of Sciences Publ., 2015, p. 227–241. (In Russian)

30. Malahova T.V., Malahova L.V., Budnikov A.A., Ivanova I.N. Prostranstvenno-vremennaja izmenchivost’ soderzhanija metana v Sevastopol’skoj buhte i ego jemissii v atmosferu [Spatio-temporal dynamics of methane content in the Sevastopol Bay and its emissions to the atmosphere], Vestn. Mosk. un-ta, Ser. 5, Geogr., 2020, no. 3, p. 73–80. (In Russian)

31. McGinnis D.F., Greinert J., Artemov Y., Beaubien S.E., Wüest A. Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere? Journal of Geophysical Research, 2006, vol. 111, no. 9, p. C09007, DOI: 10.1029/2005JC003183.

32. Ozera Karelii. Spravochnik [Lakes of Karelia. Handbook], N.N. Filatov, V.I. Kuharev (eds.), Petrozavodsk, Karelian Research Centre of the Russian Academy of Sciences Publ., 2013, 464 p. (In Russian)

33. Potahin M.S., Belkina N.A., Slukovskij Z.I., Novickij D.G., Morozova I.V. Izmenenie donnyh otlozhenij Vygozera v rezul’tate mnogofaktornogo antropogennogo vozdejstvija [Changes in bottom sediments of Vygozero as a result of multifactorial anthropogenic impact], Obshhestvo. Sreda. Razvitie, 2018, no. 3 (48), p. 107–117. (In Russian) RD 52.24.511-2013, Massovaja dolja metana v donnyh otlozhenijah.

34. Metodika izmerenij gazohromatograficheskim metodom s ispol’zovaniem analiza ravnovesnogo para [Guidance document 52.24.511-2013, Mass fraction of methane in bottom sediments. Gas chromatographic measurement technique using equilibrium vapor analysis], Rostov-on-Don, Hydrochemical Institute, 2013, 19 p. (In Russian)

35. RD 52.24.512-2012, Ob’emnaja koncentracija metana v vodah. Metodika izmerenij gazohromatograficheskim metodom s ispol’zovaniem analiza ravnovesnogo para [Guidance document 52.24.512-2012, Volumetric concentration of methane in waters. Gas chromatographic measurement technique using equilibrium vapor analysis], Rostov-on-Don, Hydrochemical Institute, 2012, 23 p. (In Russian)

36. Salomatin A.S., Yusupov V.I., Vereshchagina O.F., Chernykh D.V. An acoustic estimate of methane concentration in awater column in regions of methane bubble release, Acoustical Physics, 2014, vol. 60, no. 6, p. 671–677.

37. Scientific Assessment of Ozone Depletion, 1994, World Meteorological Organization Global Ozone Research and Monitoring Project, 1994, no. 37.

38. Scientific Assessment of Ozone Depletion, 2010, World Meteorological Organization Global Ozone Research and Monitoring Project, 2010, no. 52.

39. Streleckaja I.D., Lejbman M.O., Kizjakov A.I., Oblogov G.E., Vasil’ev A.A., Homutov A.V., Dvornikov Ju.A. Podzemnye l’dy i ih rol’ v formirovanii voronki gazovogo vybrosa na poluostrove Jamal [Groud ice and its role in the formation of gas-emission crater in the Yamal Peninsula], Vestn. Mosk. un-ta, Ser. 5, Geogr., 2017, no. 2, p. 91–99. (In Russian)

40. Wise D.L., Houghton G. The diffusion coefficient of ten slighly soluble gases in water of 10–60°C, Chemical Engineering Science, 1966, vol. 21, no. 11, p. 999–1010.


Review

For citations:


Morozov I.V., Belkina N.A., Potakhin M.S., Gatalskaya E.V. Emission of methane from bottom sediments of the Vygosero reservoir. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2022;(6):15-26. (In Russ.) https://doi.org/10.55959/MSU0579-9414-5-2022-6-15-26

Views: 170


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0579-9414 (Print)