Comparison of results obtained through the analysis of chemical elements in background forest soils by different spectroscopy methods
Abstract
The contents of Fe, Mn, Ti, Zr, Ni, Co, Cr, Zn, Pb in soil bulk samples and in five particle size fractions (1–0,25, 0,25–0,05, 0,05–0,01, 0,01–0,001, <0,001 mm) separated from the humus horizons of soils characteristic of the southeastern part of the Smolensk ‒ Moscow Upland were studied. Two methods, namely quantitative direct current arc atomic emission spectroscopy (DC-ARC-AES method) and ICP-AES/ICP-MS (ICP methods) were employed to assess concentrations of the elements in soddy soils of the sides and bottoms of two small erosional landforms and in loamy sod-podzolic soils on cover and deluvial loams. The analysis of bulk samples using ICP methods revealed higher concentrations relative to the results of DC-ARC-AES method for Mn in the 0,25–0,05 mm particle size fraction, Fe and Ni in the 0,05–0,01 mm particle size fraction, Fe, Ni, Co in the 0,01–0,001 mm particle size fraction; Fe, Ni, Cr, Zn, Co in the fraction with particle sizes <0,001 mm. The analytic method did not impact the results for Fe and Ni in the 0,25–0,05 mm particle size fraction, Co in the 0,05–0,01 mm fraction, Mn and Zn in the 0,01-0,001mm particle size fraction, Mn, Ti and Cu in the <0,001 mm particle size fraction. The DC-ARC-AES method revealed higher concentrations of elements in the coarse particle size fraction than those determined by ICP, because the fraction is dominated by mineral phases of the studied metals. The results obtained by the ICP methods for the clay fraction with the maximum content of mobile phases of elements slightly exceed those of the DC-ARC-AES analysis or show nearly equal concentrations. The regression analysis revealed a correlation between DC-ARC-AES and ICP methods if the entire range of concentrations is considered. Application of the equations for the predictive modeling of element concentrations could be limited because the residuals of the regression models do not have constant variance. According to the results obtained by two methods, the distribution of elements across the particle size fractions completely coincides for Mn, Co, Pb, Zr and Cu and is similar for Zn, Fe, Ti and Ni, i.e. the maximum and minimum concentrations of these elements were found in the same particle size fractions. Method of analysis had the maximum impact on the partitioning of Cr among particle size fractions.
Keywords
About the Authors
E. N. AseyevaRussian Federation
Faculty of Geography, Department of Landscape Geochemistry and Soil Geography
Senior Scientific Researcher, Ph.D. in Geography
O. A. Samonova
Russian Federation
Faculty of Geography, Department of Landscape Geochemistry and Soil Geography
Ph.D. in Geography
References
1. Ajmone-Marsan F., Biasioli M., Kralj T., Grčman H., Davidson C.M., Hursthouse A.S., Madrid L., Rodrigues S. Metals in particle-size fractions of the soils of five European cities, Environmental Pollution, 2008, vol. 152, р. 73–81, DOI: 10.1016/j.envpol.2007.05.020.
2. Amorosi A., Sammartino I. Assessing natural contents of hazardous metals in soils by different analytical methods and its impact on environmental legislative measures, Int. J. Environment and pollution, 2011, no. 46, p. 164–177.
3. Arinushkina E.V. Rukovodstvo po himicheskomu analizu pochv [Guidelines for soil сhemical аnalysis], Moscow, Moscow St. Univ. Publ., 1970, 487 р. (In Russian)
4. Bychkova Ja.V., Sinicyn M.Ju., Petrenko D.B. et al. Metodicheskie osobennosti mnogojelementnogo analiza gornyh porod metodom mass-spektrometrii s induktivno svjazannoj plazmoj [Methodological features of multi-element analysis of rocks by inductively coupled plasma mass spectrometry], Vestn. Mosk. un-ta, Ser. 4, Geologija, 2016, no. 6, p. 56–63, DOI: 10.33623/0579-9406-2016-6-56-63. (In Russian)
5. Congiu A., Perucchini S., Cesti P. Trace metal contaminants in sediments and soils: comparison between ICP and XRF quantitative determination, E3S Web of Conferences, 2013, no. 1, DOI: 10.1051/e3sconf/20130109004.
6. Dmitriev E.A. Matematicheskaja statistika v pochvovedenii [Mathematical statistics in soil science], Moscow, Knizhnyj dom Librokom Publ., 2009, 327 p. (In Russian)
7. Dobrovol’skij G.V., Urusevskaja I.S. Geografija pochv [Geog raphy of soils], Moscow, Moscow St. Univ. Publ., 2004, 460 p. (In Russian)
8. Gerasimova M.I., Isachenkova L.B. Pochvy i pochvennyj pokrov Satinskogo uchebnogo poligona [Soils and soil cover of the Satino training station], Moscow, Moscow St. Univ. Publ., 2003, 39 p. (In Russian)
9. Glazovskaja M.A. Geohimicheskie osnovy tipologii i metodiki issledovanija prirodnyh landshaftov [Geochemical foundations of typology and methods for the study of natural landscapes], Smolensk, Ojkumena Publ., 2002, 288 p. (In Russian)
10. Grigor’ev N.A. Raspredelenie himicheskih elementov v verhnej chasti kontinental’noj kory [Distribution of chemical elements in the upper part of the continental crust], Ekaterinburg, UrO RAN Publ., 2009, 382 p. (In Russian)
11. Hardy M., Cornu S. Location of natural trace elements in silty soils using particle-size fractionation, Geoderma, 2006, vol. 133, p. 295–308.
12. Himija tyazhelyh metallov, mysh’jaka i molibdena v pochvah [Chemistry of heavy metals, arsenic and molybdenum in soils], N.G. Zyrin, L.K. Sadovnikov (еds.), Moscow, Moscow St. Univ. Publ., 1985, 209 p. (In Russian)
13. Hu Z., Gao S. Upper crustal abundances of trace elements: A revision and update, Chemical Geology, 2008, vol. 253, iss. 3–4, p. 205–221.
14. Kabata-Pendias A. Trace elements in soils and plants, 4th ed., London, New York, CRC Press, Boca Raton, 2011, 548 p.
15. Kim H.-R., Kim K.-H., Yu S., Moniruzzaman M., Hwang S.-I., Lee G.-T., Yun S.-T. Better assessment of the distribution of As and Pb in soils in a former smelting area, using ordinary co-kriging and sequential Gaussian co-simulation of portable X-ray fluorescence (PXRF) and ICP-AES data, Geoderma, 2019, vol. 341, 2019, p. 26–38, DOI: 10.1016/j.geoderma.2019.01.031.
16. Kompleksnyj analiz chetvertichnyh otlozhenij Satinskogo uchebnogo poligona [Comprehensive analysis of Quaternary deposits of the Satino training station], G.I. Rychagov, S.I. Antonov (еds.), Moscow, Moscow St. Univ. Publ., 1992, 51 p. (In Russian)
17. Mikrojelementy v pochvah Sovetskogo Sojuza [Trace elements in the soils of the Soviet Union], V.A. Kovdа, N.G. Zyrin (еds.), Moscow, Moscow St. Univ. Publ., 1973, 281 p. (In Russian)
18. Panin A.V., Karevskaja I.A., Fuzeina Ju.N., Sheremeckaja E.D. Srednegolocenovaja faza ovragoobrazovanija v jugo-zapadnom Podmoskov’e [The Middle Holocene phase of gully formation in the southwestern Moscow region], Vestn. Mosk. un-ta, Ser. 5, Geogr., 2009, no. 6, p. 60–70. (In Russian)
19. Pljaskina O.V., Ladonin D.V. Soedinenija tjazhelyh metallov v granulometricheskih frakcijah nekotoryh tipov pochv [Compounds of heavy metals in particle size fractions of some soil types], Vestn. Mosk. un-ta, Ser. 17, Pochvovedenie, 2005, no. 4, p. 36–43. (In Russian)
20. Potts P.J., Webb P.C., Thompson M. Bias in the determination of Zr, Y and rare earth element concentrations in selected silicate rocks by ICP-MS when using some routine acid dissolution procedures: evidence from the GeoPT proficiency testing programme, Geostandards and Geoanalytical Research, 2015, vol. 39(3), p. 315–327, DOI: 10.1111/j.1751-908X.2014.00305.x.
21. Saet Ju.E., Revich B.A., Janin E.P. Geohimija okruzhajushhej sredy [Geochemistry of the environment], Moscow, Nedra Publ., 1990, 335 p. (In Russian)
22. Samonova O.A., Aseeva E.N., Kasimov N.S. Metally v granulometricheskih frakcijah pochv ovrazhnoj sistemy (jugo-vostochnaja chast’ Smolensko-Moskovskoj vozvyshennosti [Grain-size disctribution of metals in soils of a gully system (southeastern part of the Smolensk-Moscow Upland)], Vestn. Mosk. un-ta, Ser. 5, Geogr., 2016, no. 3, p. 18–28. (In Russian)
23. Samonova O.A., Kasimov N.S., Aseeva E.N. Raspredelenie metallov po granulometricheskim frakcijam v balochnoj sisteme (jugo-vostochnaja chast’ Smolensko-Moskovskoj vozvyshennosti) [Distribution of metals in granulometric fractions of a balka soil-geochemical system (south-eas tern part of the Smolensk-Moscow Upland)], Vestn. Mosk. un-ta, Ser. 5, Geogr., 2018, no. 6, p. 34–46. (In Russian)
24. Sposito G. The chemistry of soils, 2nd ed., New York, USA, Oxford University Press, 2008, p. 328.
25. Stroenie i istorija razvitija doliny r. Protvy [Structure and history of the evolution of the Protva river valley], S.I. Antonov, G.I. Rychagov (еds.), Moscow, Moscow St. Univ. Publ., 1996, 127 p. (In Russian)
26. Vasil’eva I.E., Shabanova E.V. Opredelenie mikrojelementov v rastenijah metodom dugovoj atomno-emissionnoj spektrometrii [Determination of trace elements in plants by arc atomic emission spectrometry], Analitika i control, 2019, vol. 23, no. 3, p. 298–313, DOI: 10.15826/analitika.2019.23.3.011. (In Russian)
27. Vinogradov A.P. Srednee soderzhanie himicheskih jelementov v glavnyh tipah izverzhennyh porod zemnoj kory [Abundances of chemical elements in main types of igneous rocks of the earth’s crust], Geohimija, 1962, no. 7, p. 555–571. (In Russian)
28. Vlasov D.V., Kasimov N.S., Kosheleva N.E. Geohimija dorozhnoj pyli (Vostochnyj okrug g. Moskvy) [Geochemistry of road dust (Eastern District of Moscow)], Vestn. Mosk. un-ta, Ser. 5, Geogr., 2015, no. 1, p. 23–33. (In Russian)
29. Zhang J., Wu L., Zhang Y., Li F., Fang X. and Mao H. Elemental composition and risk assessment of heavy metals in the PM10 fractions of road dust and roadside soil, Particuology, 2019, no. 44, p. 146–152, DOI: 10.1016/j.partic.2018.09.003.
30. Zhang W., Hu Z. Recent advances in sample preparation methods for elemental and isotopic analysis of geological samples, Spectrochimica Acta Part B: Atomic Spectroscopy, 2019, vol. 160, 105690, DOI: 10.1016/j.sab.2019.105690.
31. Zyrin N.G., Obuhov A.I. Spektral’nyj analiz pochv, rastenij i drugih biologicheskih ob’ektov [Spectral analysis of soils, plants and other biological objects], Moscow, Moscow St. Univ. Publ., 1977, 333 p. (In Russian)
Review
For citations:
Aseyeva E.N., Samonova O.A. Comparison of results obtained through the analysis of chemical elements in background forest soils by different spectroscopy methods. Lomonosov Geography Journal. 2022;(5):3-15. (In Russ.)