Spring hydrodynamic regime in the Kamchatka strait for the period of 1950–2017
Abstract
The Kamchatka Strait is the westernmost and deepest strait of the Aleutian archipelago. The harsh climate, the influence of permanent and seasonal atmospheric action centers, the passage of cyclones, seismic activity, tsunami hazard, and the complex bottom topography significantly complicates the investigation of water circulation in the Kamchatka Strait. Thus the goal of our research was to study the variability of water circulation in the strait during spring hydrological season (May, June) for the period of 1950‒2017 based on numerical modeling. The Ocean Data View software (ODV software) was used for statistical processing and graphical display of the data. The modeling results showed that the spring change of the winter atmospheric monsoon to the summer monsoon causes the transformation of current system. Against the background of cyclonic water movement prevailing during the whole year in the region of the Aleutian Island arc, the cyclonic activity in the Kamchatka Strait weakens in the spring, and anticyclonic gyres are formed, contributing to significant inflow of warm Pacific waters into the Bering Sea. Besides, during the above-mentioned season the Kamchatka current is not a single continuous flow of water masses. Instead, several hydrodynamic gyres of different signs are noted, indicating its vortex transitional structure. It is shown that the spring hydrological season is a kind of a threshold for the change from winter to summer water regimes, because in the spring synoptic season (March, April) the winter monsoon still prevails, and the average monthly air temperature is below zero. The differences in May and June show a gradual seasonal transformation of circulation schemes in the region, and, at the same time, a certain instability of hydrodynamic structures associated with uneven spring atmospheric processes.
About the Authors
G. A. VlasovaRussian Federation
Informatics and Ocean Monitoring Laboratory, Leading Scientifi c Researcher, Ph.D. in Geography
S. S. Marchenko
Russian Federation
Informatics and Ocean Monitoring Laboratory, Leading Engineer
N. I. Rudykh
Russian Federation
Informatics and Ocean Monitoring Laboratory, Senior Scientifi c Researcher, Ph.D. in Geography
References
1. Arsenyev V.S. Techenija i vodnye massy Beringova morja [Flows and water masses of the Bering Sea], Moscow, Nauka Publ., 1967, 135 p. (In Russian)
2. Belonenko T.V., Kubryakov A.A., Stanichny S.V. Spektral’nye harakteristiki voln Rossbi severo-zapadnoj chasti Tihogo okeana [Spectral characteristics of Rossby waves of the North-Western Pacific Ocean], Issledovanie Zemli iz kosmosa, 2016, no. 1–2, p. 43–52. (In Russian)
3. Dobrovolsky A.D., Arsenyev V.S. Gidrologicheskaja harakteristika Beringova morja [The Hydrological Characteristic of the Bering Sea], Trudy IO of the USSR Academy of Sciences, 1961, vol. 38, p. 64–96. (In Russian)
4. Felsenbaum A.I. [Dynamics of sea currents], Itogi nauki. Gidromehanika [Results of Science. Hydromechanics], Moscow, VINITI Publ., 1970, p. 97–338. (In Russian)
5. Khen G.V., Basyuk E.O. Oceanographic Conditions of the Bering Sea in BASIS, NPAFC Technological Report, 2005, no. 6, p. 21–23.
6. Khen G.V., Zaochniy A.N. Izmenchivost’ rashoda Kamchatskogo techenija i okeanologicheskih parametrov v Kamchatskom prolive [The variability of the flow of the Kamchatka current and oceanological parameters in the Kamchatka Strait], Izvestia of TINRO, 2009, vol. 158, p. 247–260. (In Russian)
7. Khen G.V., Zavolokin A.V. Peremena v cirkuljacii vod i ee znachenie v raspredelenii i obilii lososej v zapadnoj chasti Beringova morja v nachale 21-go stoletija [Change in water circulation and its importance in the distribution and abundance of salmon in the western part of the Bering Sea at the beginning of the 21st century], Izvestia of TINRO, 2015, vol. 181, p. 95–114. (In Russian)
8. Kinney J.C., Maslowski W. On the oceanic communication between the Western Subarctic Gyre and the deep Bering Sea, Deep-Sea Research, 2012, vol. 66, p. 11–25.
9. Overland J.E., Spillane M.C., Hurlburt H.E., Wallcraft A.J. A numerical study of the circulation of the Bering Sea basin and exchange with the North Pacific Ocean, Physical oceanography, 1994, vol. 24, p. 736–758.
10. Panteleev G., Yaremchuk M., Luchin V., Nechaev D., Kukuchi T. Variability of the Bering Sea in the period 1992– 2010, J. Oceanogr., 2012, vol. 68, p. 485–496, DOI: 10.1007/s10872-012-0113-0.
11. Panteleev G.G., Stabeno P., Luchin V.A., Nechaev D.A., Ikeda V. Summer transport estimates of the Kamchatka Current derived as a variational inverse of hydrophysical and surface drifter data, Geophysical Research Letters, 2006, vol. 33, 5 p., DOI: 10.1029/2005GL024974.
12. Polyakova A.M., Vlasova G.A., Vasilyev A.S. Vlijanie atmosfery na podstilajushhuju poverhnost’ i gidrodinamicheskie protsessy Beringova morja [The influence of the atmosphere on the underlying surface and hydrodynamic processes of the Bering Sea], Vladivostok, Dal’nauka Publ., 2002, 202 p. (In Russian)
13. Rogachev K.A., Shlyk N.V. Uvelicheniye radiusa aleutskikh vikhrey i ikh dolgovremennaya evolyutsiya [The increased radius of the Aleutian eddies and their longterm evolution], Russian Meteorology and Hydrology, 2010, vol. 35, no. 3, p. 206–210, DOI: 10.3103/S1068373910030076.
14. Schlitzer R. Interactive analysis and visualization of geoscience data with Ocean Data View, Computers & Geosciences, 2002, vol. 28, p. 1211–1218.
15. Shtokman V.B. O prichine krugovyh techenij okolo ostrovov i protivopolozhnyh techenij u beregov prolivov [About the cause of circular currents near the islands and opposite currents near the coast of straits], Izvestija AN SSSR, Ser. geogr., 1954, no. 4, p. 29–37. (In Russian)
16. Solomon H., Ahlnas K. Eddies in the Kamchatka Current, Deep Sea Resource, 1978, vol. 25, p. 403–410.
17. Timonov V.V. Rezul’tirujushhie i vtorichnye techenija v morjah s prilivami [Resulting and secondary currents in the tidal seas], Proceedings of the Oceanographic Commission of the USSR Academy of Sciences, 1960, vol. 10(1), p. 43–50. (In Russian)
18. Vasiliev A.S. Adaptivno-obuchajushhajasja sistema prognozirovanija klassov prirodnyh processov, ch.1 [Adaptive learning system of forecasting the classes of natural processes, part 1], St. Petersburg, Gidrometeoizdat Publ., 2001, 136 p. (In Russian)
19. Vlasova G.A., Vasilyev A.S., Shevchenko G.V. Prostranstvenno-vremennaja izmenchivost’ struktury i dinamiki vod Ohotskogo morja [Spatio-temporal variability of the structure and dynamics of water of the Sea of Okhotsk], Moscow, Nauka Publ., 2008, 359 p. (In Russian)
20. Zhabin I.A., Lobanov V.B., Watanabe S., Vakita M., Taranova S.N. Vodoobmen mezhdu Beringovym morem i Tikhim okeanom cherez Kamchatskiy proliv [Water exchange between the Bering Sea and the Pacific Ocean through the Kamchatka Strait], Russian Meteorology and Hydrology, 2010, vol. 35, no. 3, p. 218–224, DOI: 10.3103/S106837391003009X.
21. Web sources
22. IOC, IHO, and BODC, 2003. “Centenary Edition of the GEBCO Digital Atlas”, published on CD-ROM on behalf of the Intergovernmental Oceanographic Commission and the International Hydrographic Organization as a part of the General Bathymetric Chart of the Oceans; British Oceanographic Data Centre, Liverpool, URL: https://www.gebco.net/data_and_products/gridded_bathymetry_data/ (access date 22.02.2018).
23. NCEP/NCAR Reanalysis Monthly Means and Other Derived Variables, URL: http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.html (access date 22.02.2018).
24. State Nature Biosphere Reserve “Komandorsky”. Territory, URL: http://komandorsky.ru/territory.html (access date 05.22.2020).
25. World Ocean Database 2013, URL: https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html (access date 22.02.2018).
Review
For citations:
Vlasova G.A., Marchenko S.S., Rudykh N.I. Spring hydrodynamic regime in the Kamchatka strait for the period of 1950–2017. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2022;(4):79-87. (In Russ.)