Problems of geoinformation modeling of natural-zonal differentiation in geography
Abstract
he natural zone is a basic concept of physical geography, reflecting the horizontal differentiation of the geographic sphere from the equator to the poles. Diversification of global geospatial data and the improvement of automatic computer classification methods offer new opportunities for the application of geoinformation analysis algorithms for delimitation of land units by zonal climatic features. The aim of the article is to apply geoinformation modeling to identify natural zonal boundaries, as well as to reveal limitations and problems associated with the uncontrolled classification. We use normalized indicators from the University of Edinburgh database (compiled on the basis of WorldClim data). At the first step, a set of significant climatic parameters necessary to model zonal-climatic groupings of natural complexes: annual temperature range, seasonality of monthly average temperatures, annual sum of average daily temperatures above 0°C, annual seasonality of precipitation, Thornthwaite aridity index and seasonality of potential evapotranspiration, was substantiated by the analysis of the main components. Further, uncontrolled classification of these parameters was carried out according to a different number of classes (15, 22, 72). To obtain a picture similar to the global naturalzonal differentiation, 22 classes are allocated in the model. New zonal-climatic boundaries obtained as a result of modeling were compared with the boundaries of natural zones on maps compiled on the basis of other methodological approaches using the case of Europe. In general new boundaries reflect major regularities of the belt-zonal differentiation of the land and could provide background for further typology of landscapes by means of geoinformation modeling. The study made it possible to identify principal methodological limitations of the geoinformation modeling of natural zones at the global and continental levels. Limitations of the cluster analysis for small-scale mapping of natural complexes are also associated with the complexity of choosing the optimal number of classes to obtain adequate visualization of the spatial structure of natural zonal systems, as well as with the “equal contribution” factor of all climatic variables used for modeling. It is shown that realization of automated modeling algorithms requires other geospatial data, in addition to climatic parameters (even in various combinations). The undoubted advantage of the described approach is the reproducibility of classification algorithms and the possibility to obtain the required degree of detail at the output, depending on specific tasks of particular geo-ecological studies.
About the Authors
E. Yu. KolbowskyRussian Federation
Faculty of Geography, Department of World Physical Geography and Geoecology, Leading Scientifi c Researcher, D.Sc. in Geography
N. N. Alekseeva
Russian Federation
Faculty of Geography, Department of World Physical Geography and Geoecology, Associate Professor, Ph.D. in Geography
A. I. Bancheva
Russian Federation
Faculty of Geography, Department of World Physical Geography and Geoecology, Scientifi c Researcher, Ph.D. in Geography
O. A. Klimanova
Russian Federation
Faculty of Geography, Department of World Physical Geography and Geoecology, Associate Professor, Ph.D. in Geography
References
1. Bailey R.G. Ecoregions: the Ecosystem Geography of the Oceans and Continents, New York, Springer, 1998, 176 p.
2. Bailey R.G. Ecosystem Geography. From Ecoregions to Sites, New York, Springer-Verlag, 2009, 251 p.
3. Bunce R.G.H., Carey P.D., Elena-Rosselló R., Orr J., Watkins J.W., Fuller R. A comparison of different biogeographical classifications of Europe, Great Britain and Spain, Journal of Environmental Management, 2002, 65, p. 121–134.
4. Clement F.E., Shelford V.E. Bio-ecology, New York, John Wiley & Sons, 1939, 425 p.
5. D’jakonov K.N., Shilovcev O.A., Haritonova T.I. Prostranstvennye zakonomernosti ispol’zovanija solnechnoj radiacii (FAR) landshaftami Vostochnoj Evropy [Spatial peculiarities of solar radiation use (FAR) by the landscapes of Eastern Europe], Izvestiya RAN, ser. Geograficheskaya, 2005, no. 1, p. 24–32. (In Russian)
6. Dokuchaev V.V. K ucheniyu o zonakh prirody. Gorizontal’nye i vertikal’nye pochvennye zony [On the Theory of Natural Zones: Lateral and Vertical Soil Zones], St. Petersburg, 1899, 27 p. (In Russian)
7. Eetvelde van V., Antrop M. A stepwise multi-scaled landscape typology and characterization for trans-regional integration, applied on the federal state of Belgium, Landscape and Urban Planning, 2009, no. 91, p. 160–170.
8. Ergüner Y., Kumar J., Hoffman F.M., Dalfes H.N., Hargrove W.W. Mapping ecoregions under climate change: a case study from the biological ‘crossroads’ of three continents, Turkey, Landscape Ecology, 2019, no. 34, p. 35–50.
9. Fick S.E., Hijmans R.J. WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas, Int. Journal of Climatology, 2017, no. 37(12), p. 4302–4315.
10. Geograficheskie pojasa i zonal’nye tipy landshaftov [Geographical belts and zonal types of landscapes], E.N. Lukashovа (ed.), map, scale 1 : 15 000 000, Moscow, GUGK Publ., 1988. (In Russian)
11. Global Ecological Zoning for the Global Forest Resources Assessment 2000, Final Report, Rome, FAO, 2001, 211 p.
12. Grigor’ev A.A., Budyko M.I. O periodicheskom zakone geograficheskoi zonal’nosti [About the periodic law of geographical zoning], Doklady AN SSSR, 1956, vol. 110, no. 1, p. 129–132. (In Russian)
13. Hargrove W., Hoffman F. Potential of Multivariate Quantitative Methods for Delineation and Visualization of Ecoregions, US Department of Energy Publications, 2005, no. 10, p. 41–59.
14. Isachenko A.G. Landshaftnaja struktura Zemli, rasselenie, prirodopol’zovanie [Landscape pattern of the Earth, resettlement, and nature management], St. Petersburg, Izdvo S.-Peterb. un-ta, 2008, 320 p. (In Russian)
15. Isachenko A.G. Landshaftovedenie i fiziko-geograficheskoe rajonirovanie [Landscape science and physical-geographical regionalization], Moscow, Vysshaja shkola Publ., 1991, 366 p. (In Russian)
16. Isachenko A.G., Shljapnikov A.A. Landshafty [Landscapes], Moscow, Mysl’ Publ., 1989, 504 p. (In Russian)
17. Isachenko A.G. Seasonal hydrothermic phases of landscapes, Resources and Environment: World Atlas, Ed. Holzel, Vienna and IG RAS, Moscow, 1998, vol. 2, 133 р.
18. Kottek M., Grieser J., Beck C., Rudolf B., Rubel F. World Map of the Köppen-Geiger climate classification updated, Meteorologische Zeitschrift, 2006, vol. 15, no. 3, p. 259–263.
19. Lowell K.E. Differences between ecological land type maps produced using GIS or manual cartographic methods, Photogrammetric Engineering and Remote Sensing, 1990, no. 56, p. 169–173.
20. Lukashova E.N., Ignat’ev G.M. [Terrestrial landscapes and physical geographical regionalization of the continents. Explanatory notes], Fiziko-geograficheskii atlas mira [Physical-Geographical Atlas of the World], Moscow, 1964, 293 p. (In Russian)
21. Metzger M.J., Bunce R.G.H., Jongman R.H.G., Muche C.A., Watkins J.W. A climatic stratification of the environment of Europe, Global Ecology and Biogeography, 2005, no. 14(6), p. 549–563.
22. Metzger M.J., Bunce R.G.H., Jongman R.H.G., Sayre R., Trabucco A., Zomer R. A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring, Global Ecology and Biogeography, 2013, no. 22, p. 630–638.
23. Mil’kov F.N. K voprosu o sushhestvovanii landshaftnoj sfery Zemli i o meste landshaftovedenija v sisteme fiziko-geograficheskih nauk [To the existence of the Earth’s landscape sphere and the place of landscape science within the system of physical-geographical sciences], Nauchn. dokl. Vysshej shkoly. Geol.-geogr. nauki, 1959, no. 1, р. 15–20. (In Russian)
24. Mucher C.A., Klijn J.A., Wascher D.M., Schamine’e J.H.J. A new European Landscape Classification (LANMAP): A transparent, flexible and user-oriented methodology to distinguish landscapes, Ecological Indicators, 2010, no. 10, p. 87–103.
25. Olson D.M., Dinerstein E., Wikramanayake E.D., Burgess N.D., Powell G.V.N., Underwood E.C., D’Amico J.A., Itoua I., Strand H.E., Morrison J.C., Loucks C.J., Allnutt T.F., Ricketts T.H., Kura Y., Lamoreux J.F., Wettengel W.W., Hedao P., Kassem K.R. Terrestrial ecoregions of the world: a new map of life on Earth, Bioscience, 2001, no. 51(11), p. 933–938.
26. Rjabchikov A.M. Struktura i dinamika geosfery. Ejo estestvennoe razvitie i izmenenie chelovekom [Structure and dynamics of the geosphere. Its natural evolution and man-made changes], Moscow, Mysl’ Publ., 1972, 224 p. (In Russian)
27. Romanova E.P. [Landscape structure of terrestrial areas of the Earth], Geografiya, obshchestvo, okruzhayushchaya sreda, t. II, Funktsionirovanie i sovremennoe sostoyanie landshaftov [Geography, Society, Environment, vol. II, Functioning and current state of landscapes], Moscow, Gorodets Publ., 2004, p. 303–318. (In Russian)
28. Romanova E.P., Alekseeva N.N., Arshinova M.A., Klimanova O.A., Kovaleva T.A., Kondratyeva T.I., Medvedev A.A. Novaya karta mira “Geograficheskie poyasa i prirodnye zony sushi Zemli” [A new map of “Geographical belts and natural zones of the Earth”], Vestn. Mosk. un-ta, Ser. 5, Geogr., 2015, no. 4, p. 3–11. (In Russian)
29. Sayre R., Bow J., Josse C., Sotomayor L., Touval J. Terrestrial Ecosystems of South America, North America Land Cover Summit, 2008, p. 131–152.
30. Sayre R., Dangermond J., Frye C., Vaughan R., Aniello P., Breyer S.P., Cribbs D., Hopkins D., Nauman R., Derrenbacher W., Wright D.J., Brown C., Convis C., Smith J.H., Benson L., VanSistine D.P., Warner J., Cress J.J., Danielson S.L., Hamann T., Cecere A.D., Reddy D., Burton A., Grosse D., True H., Metzger M., Hartmann J., Moosdorf N., Durr H., Paganini M., Defourny P., Arino O., Maynard S., Anderson M., Comer P. A New Map of Global Ecological Land Units. An Ecophysiographic Stratification Approach, Washington, DC, Association of American Geographers, 2014, 46 p.
31. Walter H., Breckle S.W. Walter’s Vegetation of the Earth: The Ecological Systems of the Geo-Biosphere, New York, Springer-Verlag, 2002, p. 86.
32. Walter H. Die Vegetation der Erde in ökologischer Betrachtung, bd. 2, Gemä ssigten und arktischen Zonen, Jena, G. Fischer, 1968, 1001 p.
Review
For citations:
Kolbowsky E.Yu., Alekseeva N.N., Bancheva A.I., Klimanova O.A. Problems of geoinformation modeling of natural-zonal differentiation in geography. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2022;(4):3-15. (In Russ.)