Comparative analysis of methods of the digital terrain model interpolation (case study of the ‟Nizhnaya Kama” national park)
Abstract
Spatial interpolation methods for generation of a digital terrain model were compared for the forested areas of the "Nizhnyaya Kama” National Park (Republic of Tatarstan, Russia). The available topographic maps of the park territory at a scale of 1 : 100 000 were used. The interpolation methods, namely the inverse distance weighting with different power parameters p (IDW1, IDW2, IDW3, IDW4), ordinary kriging with Matern (OKMat) and spherical (OKSph) variogram models, multilevel b-splines (MBS) and thin plate splines (TPS), were evaluated in terms of vertical accuracy and hydrological precision. The hydrological precision was calculated based on the distance of the channel network identified on the basis of interpolated terrain models from their actual location. The results of the assessment based on the nodes of isolines and characteristic points of the terrain showed that the method of inverse weighted distances produces the greatest error when creating a digital elevation model. Geostatistical and spline methods had similar accuracies. According to the precision of the channel network positioning, all methods were arranged in the following order: IDW1 - IDW3 - MBS -IDW4 - IDW2 - OKSph - TPS - OKMat. The general conclusion is that TPS and ordinary kriging methods allow obtaining the most realistic representation of relief for the tasks requiring a hydrologically correct terrain model. In particular, the ordinary kriging method with the Matern variogram model was the most correct interpolator for the surveyed territory of the "Nizhnyaya Kama” National Park.
About the Authors
S. S. RyazanovRussian Federation
Senior Scientific Researcher, Ph.D. in Biology, Laboratory of Soil Ecology.
V. I. Kulagina
Russian Federation
Head of the Laboratory, Ph.D. in Biology, Laboratory of Soil Ecology.
References
1. Ajvazi B., Czimber K. A comparative analysis of different DEM interpolation methods in GIS: case study of Rahovec, Kosovo, Geodesy and cartography, 2019, vol. 45, no. 5, p. 43-48, DOI: 10.3846/gac.2019.7921.
2. Alcaras E., Parente C., Vallario A. Comparison of different interpolation methods for DEM production, International Journal of Advanced Trends in Computer Science and Engineering, 2019, vol. 6, no. 4, p. 1654-1659, DOI: 10.30534/ijatcse/2019/91842019.
3. Alganci U., Besol B., Sertel E. Accuracy Assessment of Different Digital Surface Models, Intern. Journal of GeoInformation, 2018, vol. 7, no. 3, p. 114, DOI: 10.3390/ijgi7030114.
4. Arun P.V. A comparative analysis of different DEM interpolation methods, The Egyptian Journal of Remote Sensing and Space Science, 2013, vol. 16, no. 2, p. 133-139, DOI: 10.1016/j.ejrs.2013.09.001.
5. Baugh C.A., Bates P.D., Schumann G., Trigg M.A. SRTM vegetation removal and hydrodynamic modeling accuracy, Water Resour. Res., 2013, vol. 49, no. 9, p. 52765289, DOI: 10.1002/wrcr.20412.
6. Boreggio M., Bernard M., Gregoretti C. Evaluating the Differences of Gridding Techniques for Digital Elevation Models Generation and Their Influence on the Modeling of Stony Debris Flows Routing: A Case Study from Rovina di Cancia Basin (North-Eastern Italian Alps), Front. Earth Sci., 2018, vol. 6, p. 89, DOI: 10.3389/feart.2018.00089.
7. Conrad O., Bechtel B., Bock M., Dietrich H., Fischer E., Gerlitz L., Wehberg J., Wichmann V., Boehner J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geoscientific Model Development, 2015, vol. 8, p. 19912007, DOI: 10.5194/gmd-8-1991-2015.
8. Donato G., Belongie S. Approximate Thin Plate Spline Mappings and Principal Warps, Computer Vision - ECCV 2002: European Conference on Computer Vision: Lecture Notes in Computer Science, A. Heyden, G. Sparr, M. Nielsen, P. Johansen (eds.), Berlin, Heidelberg, Springer Berlin Heidelberg, 2002, vol. 2352, p. 21-31, DOI: 10.1007/3-540-47977-5_2.
9. Elkhrachy I. Vertical accuracy assessment for SRTM and ASTER Digital Elevation Models: A case study of Najran city, Saudi Arabia, Ain Shams Engineering Journal, 2018, vol. 9, no. 4, p. 1807-1817, DOI: 10.1016/j.asej.2017.01.007.
10. Eritsyan G.G. Sravnenie tsifrovykh modelei rel'efa, poluchennykh s topograficheskikh kart masshtaba 1 : 50 000, 1 : 100 000, 1 : 200 000 s TsMR SRTM [Comparison of digital terrain models driven from 1 : 50 000, 1 : 100 000 and 1 : 200 000 topographical maps, with DEM SRTM], Izvestiya NAN RA, Nauki o Zemle, 2013, vol. 66, no. 1, p. 34-47 (In Russian)
11. Gareev R.M., Kulagin A.V., Blatt L.V., Yarullin F.Kh., Solov'ev D.A., Prokhorov V.E., Artem'eva T. I. Kom-pleksnoe izuchenie lesnykh ekosistem natsional'nogo parka "Nizhnyaya Kama” i otsenka vozdeistviya na nikh ob”ektov neftedobychi [Comprehensive study of forest ecosystems of the "Nizhnyaya Kama” National Park and assessment of the impact of oil production facilities over them], Ekologicheskii konsalting, 2009, vol. 1, no. 33, p. 2-10. (In Russian)
12. Goovaerts P. Geostatistics for Natural Resources Evaluation: Applied Geostatistics, New York, Oxford, Oxford University Press, 1997, 485 p.
13. Hutchinson M.F., Xu T., Stein J.A. Recent Progress in the ANUDEM Elevation Gridding Procedure, Geomorphometry, Redlands, CA, 2011, p. 19-22.
14. Keller W., Borkowski A. Thin plate spline interpolation, Journal of Geodesy, 2019, vol. 93, no. 9, p. 1251-1269, DOI: 10.1007/s00190-019-01240-2.
15. Knotters M., Heuvelink G.B.M., Hoogland T., Walvoort D.J.J. A Disposition of interpolation techniques, Wageningen, Netherlands, Alterra Wageningen UR, 2010, 92 p.
16. Kopecky M., Cizkova S. Using topographic wetness index in vegetation ecology: does the algorithm matter? Topographic wetness index in vegetation ecology, Applied Vegetation Science, 2010, vol. 13, no. 4, p. 450-459, DOI: 10.1111/j.1654-109X.2010.01083.x.
17. Lauermann M., Betz F., Cyffka B. Channel Network Derivation from Digital Elevation Models - An Evaluation of Open-Source Approaches, Conference, Central Asia GIS Conference, Eichstatt, Germany, Catholic University Eichstatt-Ingolstadt, 2016, р. 8.
18. Lee S., Wolberg G., Shin S.Y. Scattered data interpolation with multilevel B-splines, IEEE Trans. Visual. Com-put. Graphics, 1997, vol. 3, no. 3, p. 228-244, DOI: 10.1109/2945.620490.
19. Li J., Heap A.D. A Review of Spatial Interpolation Methods for Environmental Scientists, Canberra, Australia, Australian Government, Geoscience Australia, 2003, 137 p.
20. Pavlova A.I. Analysis of elevation interpolation methods for creating digital elevation models, Optoelectron Instrument Proc., 2017, vol. 53, no. 2, p. 171-177, DOI: 10.3103/S8756699017020108.
21. Pebesma E.J. Gstat user's manual, Dept. of Physical Geography, Utrecht University, Utrecht, The Netherlands, 2003, 108 p.
22. Pebesma E.J. Multivariable geostatistics in S: the gstat package, Computers & Geosciences, 2004, vol. 30, p. 683691.
23. Rui X.-P., Yu X.-T., Lu J., Ashraf M.A., Song X.-F. An algorithm for generation of DEMs from contour lines considering geomorphic features, Earth Sci. Res. Journal, 2016, vol. 20, no. 2, p. 1-9, DOI: 10.15446/esrj.v20n2.55348.
24. Soycan A., Soycan M. Digital elevation model production from scanned topographic contour maps via thin plate spline interpolation, The Arabian Journal for Science and Engineering, 2009, vol. 34, no. 1, p. 121-134.
25. Szypula B. Geomorphometric comparison of DEMs built by different interpolation methods, Landform Analysis, 2017, vol. 32, p. 45-58, DOI: 10.12657/landfana.032.004.
26. Tadono T., Ishida H., Oda F., Naito S., Minakawa K., Iwamoto H. Precise Global DEM Generation by ALOS PRISM, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., 2014, vol. II-4, p. 71-76, DOI: 10.5194/isprsannals-II-4-71-2014.
27. Tarboton D.G., Bras R.L., Rodriguez-Iturbe I. On the extraction of channel networks from digital elevation data, Hydrological Processes, 1991, vol. 5, no. 1, p. 81-100, DOI: 10.1002/hyp.3360050107.
28. Wang L., Liu H. An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modeling, International Journal of Geographical Information Science, 2006, vol. 20, no. 2, p. 193-213, DOI: 10.1080/13658810500433453.
29. Webster R., Oliver M.A. Geostatistics for Environmental Scientists: Statistics in practice, 2nd ed., England, John Wiley & Sons Ltd, 2007, 318 p.
30. QGIS Association, QGIS Geographic Information System, 2021, URL: http://www.qgis.org/ (access date 02.02.2021).
31. R Core Team, A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2020, URL: https://www.R-project.org/ (access date 02.02.2021).
Review
For citations:
Ryazanov S.S., Kulagina V.I. Comparative analysis of methods of the digital terrain model interpolation (case study of the ‟Nizhnaya Kama” national park). Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2022;(3):62-72. (In Russ.)