Comparison of simulated and reconstructed paleotemperatures during the last glacial maximum in Northern Eurasia
https://doi.org/10.55959/MSU0579-9414-5-2022-6-40-48
Abstract
The study deals with comparative analysis of independent reconstructions of temperature regime during the cold period of the largest in the Russian Arctic Late Pleistocene glaciation (18–21 kyr BP), based on the data of isotopic analysis and the results of numerical modeling. The study used the data of numerical experiments of PMIP3 climatic models of the Earth system, and the results of temperature reconstruction based on the isotopic composition of syngenetic ice wedges (δ18O). It is shown that in some areas there are significant differences in temperatures reconstructed from the isotope data and obtained from the modeling data. In particular, it was found that the difference in simulated and reconstructed temperatures decreases with distance from the hypothetic ice sheet, which allows concluding that the accuracy of the ice sheet location in the models is significant for the final simulation results.
In particular, different approaches in paleoclimatic studies lead to rather different estimates of the area of continental and shelf ice of the epoch. The area of glaciers and their properties are taken into account in climate models in the process of calculations. Our investigation shows that high-quality modeling definitely requires refining the paleoreconstructions based on proxy climate data.
Keywords
About the Authors
G. V. SurkovaRussian Federation
Department of Meteorology and Climatology, Professor, D.Sc. in Geography
Yu. K. Vasil’chuk
Russian Federation
Department of Landscape Geochemistry and Soil Geography, Professor, Dr.Sc. in Geology and Mineralogy
References
1. Abe-Ouchi A., Saito F., Kageyam M., Braconno P., Harrison S.P., Lambeck K., Otto-Bliesner B.L., Peltier W.R., Tarasov L., Peterschmitt J.-Y., Takahashi K. Ice-sheet configuration in the CMIP5/PMIP3 Last Glacial Maximum experiments, Geosci. Model Dev., 2015, vol. 8, р. 3621–3637, DOI: 10.5194/gmd-8-3621-2015.
2. Alekseev G.V. Projavlenie i usilenie global’nogo poteplenija v Arktike [Development and amplification of global warming in the Arctic], Fundamental’naja i prikladnaja klimatologija, 2015, no. 1, p. 11–26. (In Russian)
3. Braconnot P., Harrison S.P., Otto-Bliesner B., Abe-Ouchi A., Jungclaus J., Peterschmitt J.-Y. The Paleoclimate Modeling Intercomparison Project contribution to CMIP5, CLIVAR Exchanges, no. 56, vol. 16, no. 2, International CLIVAR Project Office, Southampton, United Kingdom, 2011, р. 15–19.
4. Braconnot P., Harrison S.P., Kageyama M., Bartlein P.J., Masson-Delmotte V., Abe-Ouchi A., Zhao Y. Evaluation of climate models using palaeoclimatic data, Nature Climate Change, 2012, vol. 2, no. 6, р. 417–424, DOI: 10.1038/nclimate1456.
5. Doklad ob osobennostjah klimata na territorii Rossijskoj Federacii za 2019 god [A report on climate features on the territory of the Russian Federation in 2019], Moscow, 2020, 97 p. (In Russian)
6. Ekologo-geograficheskie posledstvija global’nogo poteplenija klimata 21 veka na Vostochno-Evropejskoj ravnine i v Zapadnoj Sibiri [Ecological and geographical consequences of global warming of the 21st century on the East European Plain and in Western Siberia], A.V. Kislov, N.S. Kasimov (eds.), Moscow, Moscow State University, Faculty of Geography Publ., 2011, 493 p. (In Russian)
7. Hughes A.L.C., Gyllencreutz R., Lohne Ø.S., Mangerud J., Svendsen J.I. The last Eurasian ice sheets – a chronological database and time-slice reconstruction, DATED-1, Boreas, 2016, vol. 45, iss. 1, p. 1–45, DOI: 10.1111/bor.12142.
8. IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / еdited by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley, Cambridge University Press, Cambridge, United Kingdom and New York, USA, 2013, 1535 p.
9. Kislov A.V., Surkova G.V. Klimatologija [Climatology], Moscow, INFRA-M Publ., 2020, 324 p. (In Russian)
10. Matematicheskoe modelirovanie Zemnoj sistemy [Mathematical modelling of the Earth system], N.G. Jakovlev (ed.), Moscow, MAKS Press, 2016, 328 p.
11. Serreze M.C., Barry R.G. Processes and impacts of Arctic amplification: A research synthesis, Global Planet Change, 2011, vol. 77, no. 1–2, p. 85–96. Taylor K.E., Stouffer R.J., Meehl G.A. The CMIP5 experiment design, Bull. Amer. Meteor. Soc., 2012, vol. 93, p. 485–498.
12. Vasil’chuk Yu., Vasil’chuk A. Spatial distribution of mean winter air temperatures in Siberian permafrost at 20–18 ka BP using oxygen isotope data, Boreas, 2014, vol. 43, iss. 3, p. 678–687, DOI: 10.1111/bor.12033.
13. Vasil’chuk A.С., Budantseva N.A., Surkova G.V., Chizhova Ju.N. O nadezhnosti paleotemperaturno-izotopnyh uravnenij Vasil’chuka i stanovlenii izotopnoj paleogeokriologii [On the reliability of the Vasil’chuk’s paleotemperature-isotopic equations and the establishment of isotopic paleogeocryology], Arktika i Antarktika, 2021, no. 2, p. 1–25, DOI: 10.7256/2453-8922.2021.2.36145. (In Russian)
14. Vasil’chuk Yu.K. Izotopno-kislorodnyj sostav podzemnyh l’dov (opyt paleogeokriologicheskih rekonstrukcij) [Oxygen isotope composition of ground ice (experience of paleogeocryological reconstructions)], Moscow, Izd. otdel teoreticheskih problem RAN, MGU, PNIIIS, 1992, vol. 1, 420 p.; vol. 2, 264 p. (In Russian)
15. Vasil’chuk Yu.K. Reconstruction of the paleoclimate of the Late Pleistocene and Holocene of the basis of isotope studies of subsurface ice and waters of the permafrost zone, Water Resources, 1991, vol. 17, no. 6, p. 640–647.
16. Vasil’chuk Yu.K., Surkova G.V. Verification of the Relationship between the Isotopic Composition of Ice Wedges and Cold-season Temperature over the Recent 80 Years in the Northern Permafrost Zone of Russia, Russian Meteorology and Hydrology, 2020, vol. 45, no. 11, p. 791–796.
17. Vlijanie izmenenij klimata i opasnyh prirodnyh javlenij na prirodopol’zovanie Evropejskogo Severa [Impact of climate change and natural hazards on the use of natural resources in the European North], N.S. Kasimov, L.N. Karlin (eds.), Saint Petersburg, RGGMU Publ., 2013, 124 p. (In Russian)
18. Volodin E.M. Matematicheskoe modelirovanie obshhej cirkuljacii atmosfery: Kurs lekcij [Mathematical modelling of the general atmosphere circulation], Moscow, IVM RAN, 2007, 89 p. (In Russian)
19. Vtoroj ocenochnyj doklad Rosgidrometa ob izmenenijah klimata i ih posledstvijah na territorii Rossijskoj Federacii [Second Assessment Report of Roshydromet on Climate Changes and Their Consequences on the Territory of the Russian Federation], Moscow, Rosgidromet Publ., 2014, 1008 p. (In Russian)
20. Web sources Boeke R.C., Taylor P.C. Seasonal energy exchange in sea ice retreat regions contributes to differences in projected Arctic warming, Nature Commun., 2018, vol. 9, 5017, DOI: 10.1038/s41467-018-07061-9 (access date 22.01.2022). PMIP3 (Paleoclimate Modelling Intercomparison Project Phase III), URL: https://pmip3.lsce.ipsl.fr/ (access date 22.01.2022).
Review
For citations:
Surkova G.V., Vasil’chuk Yu.K. Comparison of simulated and reconstructed paleotemperatures during the last glacial maximum in Northern Eurasia. Vestnik Moskovskogo universiteta. Seriya 5, Geografiya. 2022;(6):40-48. (In Russ.) https://doi.org/10.55959/MSU0579-9414-5-2022-6-40-48